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ABSTRACT: Using extensive molecular dynamics simulations of polyelec-
trolyte hydrogels we demonstrate that, on deformation, these hydrogels adjust
their deformed state predominantly by altering electrostatic interactions
between their charged groups rather than excluded-volume and bond energies.
On deformation, due to the hydrogel’s inherent tendency to preserve
electroneutrality in its interior, the translational entropy of counterions
decreases and the total electrostatic energy becomes more attractive. This
result is valid for a wide range of compression ratios and Bjerrum lengths. The
change in the electrostatic energy is more marked in highly swollen gels at low
ionic strengths. At high Bjerrum lengths, where most of the counterions are condensed on hydrogel chains and the gel resembles
a neutral system, the electrostatic-energy change with deformation is weaker.

Converting energy between different forms (from mechan-
ical to chemical energy, for example) and storing it safely

for future use has been an active field of research in
nanotechnology in response to a growing need for sustain-
able-energy resources. Charged polymeric structures have
attracted considerable attention in this field due to their low
cost, mechanical flexibility, transparency, and stimuli-responsive
properties, which are absent in their conventional solid-state
counterparts. Hydrogels that are highly swollen networks of
charged polymers have proven effective in various applications,
such as mechano-electric energy converters,1−4 energy
storage,5,6 and even biomimetic structures.7−9 While the
elasticity of hydrogels’ constituent chains gives them polymeric
properties, their charged or ionizable groups bring additional
electrostatic features, such as pH- and electro-responsive
characteristics.10,11 The balance between these inherent
electrostatic and elastic properties of hydrogels allows them
to adjust their internal electrostatic interactions reversibly upon
application of external electromagnetic fields or mechanical
deformations. This makes them ideal candidates for energy
converters and actuators.
The high-swelling capacity of a polyelectrolyte (PE) hydrogel

is due to a balance between the counterion-induced osmotic
pressure and the elastic energy of hydrogel chains (i.e., Donnan
equilibrium).12,13 If the hydrogel structure is compressed by an
external force, the solvent content in the gel is squeezed out,
but the ionized counterions remain in the hydrogel to maintain
the electroneutrality inside the hydrogel. If the gel volume is
decreased on compression, the deformation leads to an increase
in the monomeric concentration. Concurrently, trapped
counterions decrease their translational free energy. The
electroneutrality condition, in combination with the decrease
of intermonomer distance, forces the hydrogel to rebalance its
energetic components by adjusting the chain conformations or
repositioning its charged groups.

Recently, elegant computational studies have shed light on
the equilibrium properties of stress-free hydrogels using
molecular dynamics (MD)14,15 and Monte Carlo (MC)16−18

simulations. However, gels are deformed and not stress-free in
most practical situations. To our best knowledge, there have
been no molecular-level studies on the relationship between the
electrostatic energy and deformation of PE hydrogels, yet a
molecular-level understanding of the electrostatic effects is
essential to the development of continuum deformation
models, precise theoretical approaches, and advanced PE gel
applications.
Here, we investigate the relation between deformation and

energetic changes in PE hydrogels by means of MD
simulations. We have designed a double gel system in which
two semi-infinite hydrogel slabs are separated by a large
polymer-free region, to which counterions can escape, as shown
in Figure 1. Note that this semiperiodic design does not a priori
force counterions to stay in the gel interior upon deformation.
We demonstrate that when a PE gel is deformed, the most
notable change in the overall energetic balance takes place in
the electrostatic energy components rather than in the excluded
volume and bond energies. On deformation, the charged
backbone groups and counterions arrange themselves so as to
minimize the total electrostatic energy and form ionic
structures. This is a direct consequence of the electroneutrality
condition inside the gel: though counterions gain more entropy
outside of the gel, their energetic penalty for leaving the gel is
higher. Counterions thus remain in the gel even under very
strong compression, and this results in significant alteration of
the electrostatic energy.
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■ METHODS
Various double-hydrogel systems composed of two identical slabs, as
shown in Figure 1, are simulated with explicit counterions in implicit
good solvent. Each hydrogel slab is constructed as a defect-free cubic
polymer lattice. The lattice junction points (cross-links) are
permanent. The flexible polymer segments connecting two cross-
links of the hydrogel network are modeled using coarse-grained
Kremer-Grest (KG) bead−spring model.19,20 In this model, excluded
volume interactions are modeled via a repulsive Lennard-Jones (LJ)
potential, whereas bond interactions are modeled with a nonlinear
FENE potential. The number of monomers per linear-polymer
segment are taken to be N = 32 and 128 to obtain various volume
fractions ϕ ≈Nb3/L03, where L0 is the distance between two cross-links,
as depicted in Figure 1, and b is the size of a LJ monomer. The
chemical details of the chains are described by a charge fraction factor
f: a prescribed fraction of chain monomers are assigned q = +1e
charges. For each positive charge on the backbone, one monovalent
charge is added to the simulation box at a random position to model
ionized counterions. Hence, the overall system is electro-neutral. The
short-range Coulombic interactions between two charged monomers
separated by a distance r are calculated via

= −ϵ <U r
r

r( ) for rC
B

e (1)

where the energy scale is denoted by ϵ = 1kBT, where kB is the
Boltzmann constant and T is temperature. The strength of
electrostatic interactions is characterized by the Bjerrum length B =
e2/4πε0εϵ, where ε0 is the vacuum permittivity and ε is the relative
dielectric constant of the medium. The Bjerrum length quantifies the
length scale, above which the strength of Coulombic energies are less
than the thermal energy kBT. The electrostatic cutoff distance is re =
6b, above which longer-range electrostatic interactions are calculated
via Particle−Particle-Particle Mesh (PPPM) Ewald solver.21 The
strength of the electrostatic interactions in simulations is adjusted by
tuning the dielectric constant to obtain B ≃ 1b, 4b, 8b. As an example,
for a hydrogel composed of flexible polymers, each effective monomer
of size b is of 2−3 chemical units, hence, B ≃ 1b ≈ 7 Å corresponds to
a hydrogel dissolved in water.
In the simulations, the initial vertical box height (i.e., z ̂ component)

is set to D0 ≈ 12L0 ≈ 4h0, where h0 is the height of a slab (Figure 1).
Initially, two gels slabs are separated by a polymer-free gap of thickness
δ0 ≈ h0. While the slabs shown in Figure 1 are finite in the z-̂direction,
the hydrogel network is periodic in the lateral directions. For the

simulation box itself, periodic boundary conditions are introduced in
all directions. All MD simulations are run using the Lammps MD
package22 at constant pressure P, particle number Nm, and temperature
T. The temperature is set to T = 1.0ϵ/kB with the Noose-Hover
thermostat. To obtain a stress-free state at D0, the pressure is set to P =
Pz = Py = Pz = 0 ± δP using anisotropic pressure coupling scheme,
where the error tolerance δP ≈ 10−5 − 10−6kBT/b

3 for N = 32 and 128
hydrogels, respectively. At P = 0, both hydrogel slabs are isotropically
swollen.
Simulations of strain-controlled gel deformations: The vertical height
of the simulation box, D0, is brought to a prescribed height D < D0 and
equilibrated before the data production runs. To mimic a uniaxial
deformation scheme in production runs, the lateral (i.e., x ̂ and y)̂
components of barostat are set to Px = Py = 0 in a coupled fashion,
whereas the box height is fixed in the vertical direction. The pressure
that is necessary to keep the box height at D is recorded as Pz. In all of
the deformation simulations, Pz ≫ Px ≈ Py ≈ 0.0. Unless noted
otherwise, all results presented in this paper are averaged over time.
Error bars are not shown if they are smaller than the size of the
corresponding data point.
Undeformed gels: When a PE-gel precursor is dissolved in a
solvent with weak electrostatic strength, such as water, ionizable
backbone groups release their counterions. Due to the
electroneutrality condition in the gel, most counterions reside
inside the gel and induce an outward osmotic pressure. This
osmotic pressure can be expressed by Πci ≈kBTNf/L03 for a
dilute system with no electrostatic correlations.14,23 The elastic
energy density of the stretched network chains Πel ≈ kBT(L0/
Nνb)2/L0

3, where ν ≈ 3/5 is the scaling exponent for good
solvent, opposes the counterion-osmotic pressure.24 From the
balance of the two pressures, Πci ≈ Πel, an equilibrium swelling
ratio can be defined as

λ ≡ = ν−L
R

N f0
0

dry

1/2 1

(2)

where the size of a free N-mer chain in the dry state is Rdry =
N1/2b.
The above picture describes the swelling equilibrium well in

the absence of ionic condensation. That is, if the average
distance between two backbone charges on network chains is
≥ B, where ≡ L0/Nf = b/f1/2 ≈ 1.4b for our system. However,
when the electrostatic interactions are stronger or equivalently
< B, the Onsager-Manning transition “condenses” a fraction of
free counterions onto the chains and reduces the charge
fraction of network chains to f ̃≈b/ B < f by neutralizing Nf(1 −
/ B) counterions.

25 As a result of the counterion condensation,
fewer counterions contribute to the counterion-induced
osmotic pressure, and the equilibrium swelling ratio decreases.
Although eq 2 has no B dependence, it can still be used to gain
insight on how strong electrostatic interactions (EI) deswell the
gel in case of moderately charged gels.15 One can tentatively
replace the fraction of charges with the reduced charge fraction,
f ̃≈ b/ B < f, in eq 2 and obtain a decreasing λ0 with increasing
B.
In the simulations, each hydrogel slab is highly swollen as

schematically illustrated in Figure 1. Calculated values of
equilibrium-swelling ratios λ0 at P = 0.0 for each electrostatic
strength B and polymerization degree N are given in Table 1.
The data is well described by eq 2 (λ0 ∼ N1/2). The data shown
in Table 1 also reveals the decrease of equilibrium swelling ratio
for increasing values of B: In our simulations, B = 1b
corresponds to a no-condensation regime ( ≥ B with f = 0.5
and ν = 3/5), whereas at B = 4b and B = 8b, counterions
condense ( < B). The decrease of λ0 with increasing B is also

Figure 1. Illustration of compression simulations of a double hydrogel
system of identical gels with a charge fraction f = 0.5 and
polymerization degree N = 128. Counterions are rendered as dots.
(a) Underformed hydrogel slabs separated initially by a gap of
thickness δ0, (b) 3D view of the hydrogels, and (c) uniaxially
compressed gels. Note that the dangling ends at the edges are bonded
to those in the adjacent periodic gel. In the actual simulations, δ0 ≈ h0.
All snapshots are obtained via VMD.
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demonstrated by the simulation snapshots of fully equilibrated
systems in Figure 2 for N = 32 PE gels. For clarity, we only
show the monomers within a slice of thickness Δy ≈ 10b.

Deformation: If the hydrogel PE gels are deformed uniaxially by
decreasing the box height from D0 to a prescribed height D, the
previously discussed energy balance is altered. In an uncharged
gel, a deformed gel reaches its equilibrium state by rearranging
its monomers so that excluded-volume (or 3-body in a Θ-
solvent) interactions balance the elastic energy of chains. In PE
hydrogels, where the gel is highly swollen (i.e., L0 ∼ N; see eq 2
and Figure 1), the excluded-volume interactions are expected to
be negligible. Hence, for intermediate deformations, hydrogels
should balance their elastic and EI energies to reach mechanical
equilibrium.
In PE hydrogel, upon deformation, EI energies can change in

two ways compared to its stress-free (undeformed) state: (i) if
the total gel volume decreases, the average distance between
charged groups decreases. In turn, the EI energies become
more negative. This is also the case if concentration of a simple
electrolyte solution is increased. (ii) The distance between two
adjacent backbone charges, , decreases with deformation, and
this triggers condensation or decondensation of counterions (a
transition from > B to < B

2).
To see how the energetic balance changes with deformation,

we calculated from simulation trajectories the absolute changes
in the electrostatic, LJ pair interaction, and bond energies with
respect to energy of the undeformed state, ΔE ≡ E(D) −
E(D0). The results are shown in Figure 3 as a function of
compression ratio D/D0. The LJ interaction energies (open
symbols) weakly depend on the deformation ratios, regardless

of B. Similarly, the change in the bond energies (pluses) is
almost negligible; the energy decrease in the (less stretched)
chains parallel to the deformation axis cancels the energy
increase of the (stretched) chains in the lateral directions.
In contrast to negligible changes in the LJ and bond energies,

the electrostatic energies are altered significantly with
deformation for all ionic strengths (Figure 3). As the volume
of the hydrogels decreases, the average distance between the
charged groups decreases. This in turn leads to an alteration in
the Coulombic interactions, which are longer range than LJ
interactions. For comparison, we also simulate a simple
electrolyte (SE) solution at corresponding charge concen-
trations with B = 1b. The results are shown in Figure 3 with a
red interpolation curve: The change in EI energies for the
electrolyte solution is less than what we observe for PE gels
with the same number of charged groups.
The effect of deformations on charge−charge interactions

can be seen more clearly in Figure 3b, where we decompose the
electrostatic short-range interaction energies between all
charged groups: The counterion−counterion interaction energy
(green left triangles in Figure 3b) increases. The energy
between oppositely charged groups decreases (becomes more
negative) since the charged backbone monomers and counter-
ions start forming ionic structures such as dipoles.26

Interestingly, overall repulsive interactions between the back-

Table 1. Table of Equilibrium Swelling Ratios, λ0, Thickness
of Gap, δ0, Excluded Volume (LJ), Coulombic Interaction
Energies per Particle for the Simulated Hydrogel Systems at
D = D0

a

N B/b λ0 δ0 [σ] ELJ
0 [ϵ] ECoul

0 [ϵ]

32 1 4.2(4) 72 0.1974(7) 0.1167(6)
32 4 3.5(9) 61 0.1487(4) −0.7091(7)
32 8 1.9(2) 36 0.2104(3) −2.4484(1)
128 1 7.4(0) 273 0.0328(9) 0.0718(1)
128 4 5.8(2) 214 0.0578(7) −0.4466(7)

aλ0 ≡ L0/Rdry, where Rdry = bN1/2 is size of a N-mer free chain in the
dry state.

Figure 2. Snapshot taken from simulations of N = 32 double-gel
systems of identical gels with various electrostatic coupling strengths
B. The charge fraction is f = 0.5. Counterions are rendered in purple.
D/D0 = 0.5. For clarity, only monomers within a slice of thickness Δy
≈ 10b are shown. All snapshots are obtained via VMD.

Figure 3. (a) Absolute change in the excluded volume (open
symbols), Coulombic (filled symbols), bond (plus signs) energies for
N = 32 hydrogels as a function of deformation ratio D/D0 for various
electrostatic interaction strengths, B = 1b, 4b, 8b. ΔE ≡ E(D) −
E(D0). Coulomb energies include both short-range and long-range
interaction contributions. The solid red curve is the simulations results
for a simple electrolyte (SE) with B = 1b. Insets show the relative
changes for the Coulomb energies. (b) The counterion−counterion
(− −), counterion−backbone (− +), and backbone−backbone (+ +)
short-range Coulombic interaction energies for B = 1b. The arrow
indicates the compression ratio at which the sign of EI energy changes.
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bone groups (down triangles) seem to be unchanged with
deformation (Figure 3b), possibly for the same reason that
gives no change in the bond energies.
For low ionic strengths ( B = 1b), the sign of the total

electrostatic energy changes from positive (repulsion domi-
nated) to negative (attraction dominated) with deformation.
Contrarily, in the system with B = 4b, 8b, we find that the
electrostatic energies are always negative regardless of hydrogel
size. This is due to the fact that counterion condensation takes
place even without deformations at high ionic strengths.
According to Figure 3, in terms of energy conversion, highly

swollen gels with B = 1b, 4b are much more efficient compared
to collapsed gels with B = 8b. This is more clear in the inset of
Figure 3a, where we show the relative changes in the
electrostatic energies. From the simulations of our defect-free
gels, it turns out that the conversion efficiency depends on the
stretchability of network chains: with deformation, to preserve
its volume, ideally the gel would stretch the network chains in
the unconstrained (lateral) directions. However, in the case of
highly swollen gels (i.e., with B = 1b), the network chains are
highly stretched even in the undeformed state. As a result, the
gel volume decreases with decreasing D (red and blue symbols
in Figure 4a). On the other hand, the gels with B = 8b are

collapsed and the chains are loose (see the snapshot in Figure
2). Thus, upon deformation the gel can stretch its chains easier
in the unconstrained directions, and the volume decrease with
deformation is weaker for B = 8b (green symbols in Figure 4a).
This results in a smaller change in the counterion concentration
in the gel, hence, a lower conversion efficiency.
The alterations in the EI energies observed in Figure 3,

indeed, are a result of gel deformation. That is, for our setup,
when D/D0 ≤ 0.5. For weak compressions (i.e., D/D0 ≥ 0.5),

the decrease in the electrostatic energy is insignificant since the
gel is not deformed (only the polymer-free gap deforms). This
can be seen in Figure 4b, where we show the rescaled height of
a single PE gel slab, h/h0, as a function of compression ratio:
the EI energies (Figure 3) begin to decrease significantly if h/h0
≤ 1. Also note that in simulations the gap is visually detachable
down to D/D0 ≈ 0.2.
Overall, our MD simulations suggest that PE hydrogels can

be manipulated mechanically to store an excess electrostatic
energy. The energetic change is more pronounced than that
observed in a polymer-free simple electrolyte solution, as
shown in Figure 3.
Our MD simulations with explicit counterions suggest that if a
hydrogel undergoes strain-control deformations, an amount of
mechanical energy applied is converted into electrostatic energy
rather than elastic and excluded volume energies. The energetic
change is due the decreasing translational entropy of counter-
ion gas trapped inside the gel in combination with polymeric
features of PE gels. This scenario is only possible if ionized
counterions cannot vacate the gel, which is ensured by the
electroneutrality condition inside the gel.
An energy converter or a sensor must change the form of

energy into a usable or storable form after well-defined,
successive thermodynamics cycles. Hydrogels are promising
materials for soft electronic and actuator applications.27 Here,
indeed we show that a polyelectrolyte hydrogel’s capability to
preserve its overall electroneutrality gives rise to significant
changes in the electrostatic energies upon compression. In low
ionic-strength solvents, the energetic change is more dramatic.
In gels that can undergo pH or redox-potential variations, the
electrostatic-energy change observed in our MD simulations
may induce pH or redox-potential changes inside the gels. One
suggestion for a possible converter may be a PE hydrogel gel
system in contact with one lower- and one higher redox-
potential electrodes. By deforming the gel, the redox potential
of the gel can be manipulated and the resulting potential
difference can be harvested, analogously to a Carnot engine
(i.e., heat baths are replaced by redox baths). In some systems,
increasing ionic density in the gel structure may alter the local
pH levels, which in turn can change the ionization degree of the
charged groups on the hydrogel chains.2,4
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